Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5850, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730674

RESUMEN

We previously reported initial clinical results of post-transcriptional gene silencing of BCL11A expression (NCT03282656) reversing the fetal to adult hemoglobin switch. A goal of this approach is to increase fetal hemoglobin (HbF) expression while coordinately reducing sickle hemoglobin (HbS) expression. The resulting combinatorial effect should prove effective in inhibiting HbS polymerization at lower physiologic oxygen values thereby mitigating disease complications. Here we report results of exploratory single-cell analysis of patients in which BCL11A is targeted molecularly and compare results with cells of patients treated with hydroxyurea (HU), the current standard of care. We use single-cell assays to assess HbF, HbS, oxygen saturation, and hemoglobin polymer content in RBCs for nine gene therapy trial subjects (BCLshmiR, median HbF% = 27.9) and compare them to 10 HU-treated subjects demonstrating high and comparable levels of HbF (HU High Responders, median HbF% = 27.0). All BCL11A patients achieved the primary endpoint for NCT03282656, which was defined by an absolute neutrophil count greater than or equal to 0.5 × 109 cells/L for three consecutive days, achieved within 7 weeks following infusion. Flow cytometric assessment of single-RBC HbF and HbS shows fewer RBCs with high HbS% that would be most susceptible to sickling in BCLshmiR vs. HU High Responders: median 42% of RBCs with HbS%>70% in BCLshmiR vs. 61% in HU High Responders (p = 0.004). BCLshmiR subjects also demonstrate more RBCs resistant to HbS polymerization at lower physiologic oxygen tension: median 32% vs. 25% in HU High Responders (p = 0.006). Gene therapy-induced BCL11A down-regulation reverses the fetal-to-adult hemoglobin switch and induces RBCs with higher HbF%, lower HbS%, and greater resistance to deoxygenation-induced polymerization in clinical trial subjects compared with a cohort of highly responsive hydroxyurea-treated subjects.


Asunto(s)
Hemoglobina Falciforme , Hidroxiurea , Adulto , Humanos , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Eritrocitos , Feto , Hemoglobina Fetal/genética , Factores de Transcripción
2.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36469001

RESUMEN

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Redes Neurales de la Computación , Clatrina , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Microscopía Electrónica/métodos , Mitocondrias/ultraestructura , Poro Nuclear/ultraestructura , Caveolas/ultraestructura , Biología Celular
3.
Proc Natl Acad Sci U S A ; 119(38): e2209514119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36048924

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.


Asunto(s)
COVID-19 , Cavidad Nasal , SARS-CoV-2 , Serina Endopeptidasas , Internalización del Virus , COVID-19/virología , Furina/genética , Furina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cavidad Nasal/química , Cavidad Nasal/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
bioRxiv ; 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35702155

RESUMEN

SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity. Significance Statement: Infection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement. One sentence summary: Detailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells.

5.
Dev Cell ; 56(12): 1786-1803.e9, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34129835

RESUMEN

Nuclear envelope assembly during late mitosis includes rapid formation of several thousand complete nuclear pore complexes (NPCs). This efficient use of NPC components (nucleoporins or "NUPs") is essential for ensuring immediate nucleocytoplasmic communication in each daughter cell. We show that octameric subassemblies of outer and inner nuclear pore rings remain intact in the mitotic endoplasmic reticulum (ER) after NPC disassembly during prophase. These "inherited" subassemblies then incorporate into NPCs during post-mitotic pore formation. We further show that the stable subassemblies persist through multiple rounds of cell division and the accompanying rounds of NPC mitotic disassembly and post-mitotic assembly. De novo formation of NPCs from newly synthesized NUPs during interphase will then have a distinct initiation mechanism. We postulate that a yet-to-be-identified modification marks and "immortalizes" one or more components of the specific octameric outer and inner ring subcomplexes that then template post-mitotic NPC assembly during subsequent cell cycles.


Asunto(s)
Núcleo Celular/genética , Mitosis/genética , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/genética , Ciclo Celular/genética , Retículo Endoplásmico/genética , Humanos , Interfase/genética , Membrana Nuclear/genética , Proteínas de Complejo Poro Nuclear/biosíntesis
6.
Blood Adv ; 5(5): 1388-1402, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33661300

RESUMEN

Sickle cell disease (SCD) is associated with hemolysis, vascular inflammation, and organ damage. Affected patients experience chronic painful vaso-occlusive events requiring hospitalization. Hypoxia-induced polymerization of sickle hemoglobin S (HbS) contributes to sickling of red blood cells (RBCs) and disease pathophysiology. Dilution of HbS with nonsickling hemoglobin or hemoglobin with increased oxygen affinity, such as fetal hemoglobin or HbS bound to aromatic aldehydes, is clinically beneficial in decreasing polymerization. We investigated a novel alternate approach to modify HbS and decrease polymerization by inhibiting methionine aminopeptidase 2 (MetAP2), which cleaves the initiator methionine (iMet) from Val1 of α-globin and ßS-globin. Kinetic studies with MetAP2 show that ßS-globin is a fivefold better substrate than α-globin. Knockdown of MetAP2 in human umbilical cord blood-derived erythroid progenitor 2 cells shows more extensive modification of α-globin than ß-globin, consistent with kinetic data. Treatment of human erythroid cells in vitro or Townes SCD mice in vivo with selective MetAP2 inhibitors extensively modifies both globins with N-terminal iMet and acetylated iMet. HbS modification by MetAP2 inhibition increases oxygen affinity, as measured by decreased oxygen tension at which hemoglobin is 50% saturated. Acetyl-iMet modification on ßS-globin delays HbS polymerization under hypoxia. MetAP2 inhibitor-treated Townes mice reach 50% total HbS modification, significantly increasing the affinity of RBCs for oxygen, increasing whole blood single-cell RBC oxygen saturation, and decreasing fractional flow velocity losses in blood rheology under decreased oxygen pressures. Crystal structures of modified HbS variants show stabilization of the nonpolymerizing high O2-affinity R2 state, explaining modified HbS antisickling activity. Further study of MetAP2 inhibition as a potential therapeutic target for SCD is warranted.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Aminopeptidasas , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Antidrepanocíticos/farmacología , Humanos , Cinética , Metaloendopeptidasas , Metionil Aminopeptidasas , Ratones , Polimerizacion
7.
Front Bioeng Biotechnol ; 8: 573775, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117784

RESUMEN

We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.

8.
Science ; 369(6510)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32943500

RESUMEN

Inflammasomes are supramolecular complexes that play key roles in immune surveillance. This is accomplished by the activation of inflammatory caspases, which leads to the proteolytic maturation of interleukin 1ß (IL-1ß) and pyroptosis. Here, we show that nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3)- and pyrin-mediated inflammasome assembly, caspase activation, and IL-1ß conversion occur at the microtubule-organizing center (MTOC). Furthermore, the dynein adapter histone deacetylase 6 (HDAC6) is indispensable for the microtubule transport and assembly of these inflammasomes both in vitro and in mice. Because HDAC6 can transport ubiquitinated pathological aggregates to the MTOC for aggresome formation and autophagosomal degradation, its role in NLRP3 and pyrin inflammasome activation also provides an inherent mechanism for the down-regulation of these inflammasomes by autophagy. This work suggests an unexpected parallel between the formation of physiological and pathological aggregates.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Vigilancia Inmunológica , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pirina/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Histona Desacetilasa 6/genética , Humanos , Inflamasomas/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Transporte de Proteínas
9.
Proc Natl Acad Sci U S A ; 116(50): 25236-25242, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767751

RESUMEN

Sickle cell disease (SCD) is caused by a variant hemoglobin molecule that polymerizes inside red blood cells (RBCs) in reduced oxygen tension. Treatment development has been slow for this typically severe disease, but there is current optimism for curative gene transfer strategies to induce expression of fetal hemoglobin or other nonsickling hemoglobin isoforms. All SCD morbidity and mortality arise directly or indirectly from polymer formation in individual RBCs. Identifying patients at highest risk of complications and treatment candidates with the greatest curative potential therefore requires determining the amount of polymer in individual RBCs under controlled oxygen. Here, we report a semiquantitative measurement of hemoglobin polymer in single RBCs as a function of oxygen. The method takes advantage of the reduced oxygen affinity of hemoglobin polymer to infer polymer content for thousands of RBCs from their overall oxygen saturation. The method enables approaches for SCD treatment development and precision medicine.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Oxígeno/metabolismo , Eritrocitos/química , Eritrocitos/citología , Hemoglobina Falciforme/química , Hemoglobinas/química , Humanos , Cinética , Oxígeno/química , Análisis de la Célula Individual
10.
J Biophotonics ; 9(10): 1044-1049, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26694084

RESUMEN

We report a method to capture a multifocus image stack based on recording multiple reflections generated by imaging through a custom etalon. The focus stack is collected in a single camera exposure and consequently the information needed for 3D reconstruction is recorded in the camera integration time, which is only 100 µs. We have used the VIDA microscope to temporally resolve the multi-lobed 3D morphology of neutrophil nuclei as they rotate and deform through a microfluidic constriction. In addition, we have constructed a 3D imaging flow cytometer and quantified the nuclear morphology of nearly a thousand white blood cells flowing at a velocity of 3 mm per second. The VIDA microscope is compact and simple to construct, intrinsically achromatic, and the field-of-view and stack number can be easily reconfigured without redesigning diffraction gratings and prisms.


Asunto(s)
Citometría de Flujo , Imagenología Tridimensional , Leucocitos/citología , Microscopía/métodos , Núcleo Celular , Humanos
11.
J Biomed Opt ; 20(11): 111205, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26187324

RESUMEN

We present an optofluidic measurement system that quantifies cell volume, dry mass, and nuclear morphology of neutrophils in high-throughput. While current clinical hematology analyzers can differentiate neutrophils from a blood sample, they do not give other quantitative information beyond their count. In order to better understand the distribution of neutrophil phenotypes in a blood sample, we perform two distinct multivariate measurements. In both measurements, white blood cells are driven through a microfluidic channel and imaged while in flow onto a color camera using a single exposure. In the first measurement, we quantify cell volume, scattering strength, and cell dry mass by combining quantitative phase imaging with dye exclusion cell volumetric imaging. In the second measurement, we quantify cell volume and nuclear morphology using a nucleic acid fluorescent stain. In this way, we can correlate cell volume to other cellular characteristics, which would not be possible using an electrical coulter counter. Unlike phase imaging or cell scattering analysis, the optical coulter counter is capable of quantifying cell volume virtually independent of the cell's refractive index and unlike optical tomography, measurements are possible on quickly flowing cells, enabling high-throughput.


Asunto(s)
Citometría de Flujo/métodos , Neutrófilos/citología , Imagen Óptica/métodos , Tamaño de la Célula , Humanos , Técnicas Analíticas Microfluídicas
12.
Proc Natl Acad Sci U S A ; 112(32): 9984-9, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216973

RESUMEN

Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.


Asunto(s)
Eritrocitos/metabolismo , Oxígeno/sangre , Análisis de la Célula Individual/métodos , Citometría de Flujo , Hemoglobinas/metabolismo , Humanos , Cinética , Análisis de la Célula Individual/instrumentación , Análisis Espectral
13.
Biosensors (Basel) ; 5(2): 141-57, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25836358

RESUMEN

A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.


Asunto(s)
Holografía/métodos , Espectrometría Raman/métodos , Espermatozoides/citología , Animales , Bovinos , Holografía/instrumentación , Masculino , Preselección del Sexo/métodos , Espectrometría Raman/instrumentación , Espermatozoides/anomalías , Cromosoma X , Cromosoma Y
14.
J Biophotonics ; 8(10): 779-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25491593

RESUMEN

Male reproductive health in both humans and animals is an important research field in biological study. In order to characterize the morphology, the motility and the concentration of the sperm cells, which are the most important parameters to feature them, digital holography demonstrated to be an attractive technique. Indeed, it is a label-free, non-invasive and high-resolution method that enables the characterization of live specimen. The review is intended both for summarizing the state-of-art on the semen analysis and recent achievement obtained by means of digital holography and for exploring new possible applications of digital holography in this field. Quantitative phase maps of living swimming spermatozoa.


Asunto(s)
Holografía/métodos , Análisis de Semen/métodos , Espermatozoides/citología , Animales , Movimiento Celular , Rastreo Celular , Humanos , Masculino
15.
Biomed Opt Express ; 5(3): 690-700, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24688806

RESUMEN

In this paper we investigate the use of a digital holographic microscope, with partial spatial coherent illumination, for the automated detection and tracking of spermatozoa. This in vitro technique for the analysis of quantitative parameters is useful for assessment of semen quality. In fact, thanks to the capabilities of digital holography, the developed algorithm allows us to resolve in-focus amplitude and phase maps of the cells under study, independently of focal plane of the sample image. We have characterized cell motility on clinical samples of seminal fluid. In particular, anomalous sperm cells were characterized and the quantitative motility parameters were compared to those of normal sperm.

16.
Opt Lett ; 39(6): 1433-6, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690806

RESUMEN

Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared.

17.
Cytometry A ; 85(4): 332-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24677669

RESUMEN

We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately.


Asunto(s)
Índices de Eritrocitos , Eritrocitos/citología , Citometría de Flujo/métodos , Hemoglobinas/análisis , Técnicas Analíticas Microfluídicas/métodos , Tamaño de la Célula , Humanos
18.
J Biophotonics ; 7(5): 341-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23242911

RESUMEN

Diatoms are among the dominant phytoplankters in the world's oceans, and their external silica investments, resembling artificial photonic crystals, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light confinement. The data were discussed in the light of living cell behavior in response to their environment.


Asunto(s)
Diatomeas/citología , Holografía , Luz , Fenómenos Ópticos , Aire , Supervivencia Celular , Citoplasma
19.
Biomed Opt Express ; 4(8): 1486-93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24010010

RESUMEN

We present an imaging system that collects hyperspectral images of cells travelling through a microfluidic channel. Using a single monochrome camera and a linear variable bandpass filter (LVF), the system captures a bright field image and a set of hyperspectral fluorescence images for each cell. While the bandwidth of the LVF is 20 nm, we have demonstrated that we can determine the peak wavelength of a fluorescent object's emission spectrum with an accuracy of below 3 nm. In addition, we have used this system to capture fluorescence spectra of individual spatially resolved cellular organelles and to spectrally resolve multiple fluorophores in individual cells.

20.
Opt Express ; 21(7): 8793-8, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571968

RESUMEN

We present an optical system to measure height maps of non-adherent cells as they flow through a microfluidic channel. The cells are suspended in an index-matching absorbing buffer, where cell height is evaluated by measuring the difference in absorption between the cell and the background. Unlike interferometric microscopes, the measured cell height is nearly independent of the cell's optical properties. The height maps are captured using a single exposure of a color camera, and consequently the system is capable of high-throughput characterization of large collections of cells. Using this system, we have measured more than 1600 height maps and volumes of three different leukemia cell lines.


Asunto(s)
Rastreo Celular/instrumentación , Colorimetría/instrumentación , Leucemia/patología , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía/instrumentación , Animales , Línea Celular Tumoral , Colorantes , Diseño de Equipo , Análisis de Falla de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...